题目内容
已知等差数列{an}的前n项和为Sn,且a2=1,S11=33.
(1)求{an}的通项公式;
(2)设bn=(
)an,求证:{bn}是等比数列,并求数列{an•bn}的前n项和Tn.
(1)求{an}的通项公式;
(2)设bn=(
| 1 | 4 |
分析:(1)由已知,求出首项,公差后即可求出通项公式.
(2)先求出an•bn=
.(
)n=n•(
)n+1 再利用错位相消法求和即可.
(2)先求出an•bn=
| n |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:(1)由已知,且a2=a1+d=1,S11=11a1+55d=33,解得a1=
,d=
,an=
.
(2)bn=(
)an=(
) n,
=
,数列bn}是以
为公比的等比数列.
an•bn=
.(
)n=n•(
)n+1
Tn=1×(
)2+2×(
)3+…+n•(
)n+1 ①
Tn=+1×(
)3+2(
)4+…+(n-1)•(
)n+1+…+n•(
)n+2 ②
②-①得
Tn=(
)2+(
)3+(
)4…+(
)n+1-n•(
)n+2
=
-n•(
)n+2
∴Tn=1-(
)n-n•(
)n+1=1-
.
| 1 |
| 2 |
| 1 |
| 2 |
| n |
| 2 |
(2)bn=(
| 1 |
| 4 |
| 1 |
| 2 |
| bn+1 |
| bn |
| 1 |
| 2 |
| 1 |
| 2 |
an•bn=
| n |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
Tn=1×(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
②-①得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| ||||
1-
|
| 1 |
| 2 |
∴Tn=1-(
| 1 |
| 2 |
| 1 |
| 2 |
| 2-n |
| 2n+1 |
点评:本题考查等差数列通项公式,等比数列判定、错位相消法数列求和,考查论证、计算、逻辑思维能力.
练习册系列答案
相关题目