题目内容
(2012•江西)观察下列事实|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12 ….则|x|+|y|=20的不同整数解(x,y)的个数为( )
分析:观察可得不同整数解的个数可以构成一个首项为4,公差为4的等差数列,则所求为第20项,可计算得结果.
解答:解:观察可得不同整数解的个数4,8,12,…可以构成一个首项为4,公差为4的等差数列,
通项公式为an=4n,则所求为第20项,所以a20=80
故选B.
通项公式为an=4n,则所求为第20项,所以a20=80
故选B.
点评:本题考查归纳推理,分寻找关系式内部,关系式与关系式之间数字的变化特征,从特殊到一般,进行归纳推理.
练习册系列答案
相关题目