题目内容
设数列{an}的前n项和Sn满足:Sn+an=n,n=1,2,…,则通项an=分析:由题设条件知a1=
,2an-an-1=1,所以a2=
,a3=
,a4=
.由此可知an=
.
| 1 |
| 2 |
| 3 |
| 4 |
| 7 |
| 8 |
| 15 |
| 16 |
| 2n-1 |
| 2n |
解答:解:当n=1时,S1+a1=1,解得a1=
,
当n≥2时,Sn+an=n,Sn-1+an-1=n-1,二者相减,得2an-an-1=1,∴2an=an-1+1,
∴2a2=
+1=
,a2=
,
2a3=
+1=
,a3=
,
2a4=
+1=
,a4=
.
由此可知an=
.
| 1 |
| 2 |
当n≥2时,Sn+an=n,Sn-1+an-1=n-1,二者相减,得2an-an-1=1,∴2an=an-1+1,
∴2a2=
| 1 |
| 2 |
| 3 |
| 2 |
| 3 |
| 4 |
2a3=
| 3 |
| 4 |
| 7 |
| 4 |
| 7 |
| 8 |
2a4=
| 7 |
| 8 |
| 15 |
| 8 |
| 15 |
| 16 |
由此可知an=
| 2n-1 |
| 2n |
点评:本题考查数列的性质和应用,解题时要注意观察总结能力的培养.
练习册系列答案
相关题目