题目内容
已知数列{an}满足an>0且对一切n∈N*,有a13+a23+…+an3=Sn2,a1+a2+…+an.
(Ⅰ)求证:对一切n∈N*有
-an+1=2Sn;
(Ⅱ)求数列{an}通项公式;
(Ⅲ)求证:
+
+
+…+
<3.
(Ⅰ)求证:对一切n∈N*有
| a | 2 n+1 |
(Ⅱ)求数列{an}通项公式;
(Ⅲ)求证:
| 1 | ||
|
| ||
|
| ||
|
| ||
|
分析:(Ⅰ)由a13+a23+…+an3=Sn2,再写一式,两式相减,化简可得结论;
(Ⅱ)由an+12-an+1=2Sn=2Sn+1-2an+1,可得an+12+an+1=2Sn+1,再写一式,两式相减,可得数列{an}是以首项为a1=1,公差为1的等差数列,从而可得数列的通项公式;
(Ⅲ)利用放缩法可得
=
=
<
<
=
-
,再利用叠加法,即可证得结论.
(Ⅱ)由an+12-an+1=2Sn=2Sn+1-2an+1,可得an+12+an+1=2Sn+1,再写一式,两式相减,可得数列{an}是以首项为a1=1,公差为1的等差数列,从而可得数列的通项公式;
(Ⅲ)利用放缩法可得
| ||
|
| ||
| n2 |
| 1 | ||
|
| 2 | ||||
|
| 2 | ||||||
|
| 1 | ||
|
| 1 | ||
|
解答:(Ⅰ)证明:∵数列{an}满足:an>0,且对一切n∈N*,有a13+a23+…+an3=Sn2,…①
所以a13+a23+…+an3+an+13=Sn+12,…②
①-②得an+13=Sn+12-Sn2=an+1(Sn+1+Sn),
则an+12=Sn+1+Sn=an+1+2Sn,
所以an+12-an+1=2Sn;
(Ⅱ)解:因为an+12-an+1=2Sn=2Sn+1-2an+1,
所以an+12+an+1=2Sn+1…③
则an2+an=2Sn…④
③-④得2an+1=(an+12-an2)+(an+1-an),
从而an+1-an=1.
又a1=1,所以数列{an}是以首项为a1=1,公差为1的等差数列
所以an=n;
(Ⅲ)证明:∵an=n,∴
=
=
<
<
=
-
∴
+
+
+…+
<1+(1-
)+…+(
-
)=2+
-
-
<3.
所以a13+a23+…+an3+an+13=Sn+12,…②
①-②得an+13=Sn+12-Sn2=an+1(Sn+1+Sn),
则an+12=Sn+1+Sn=an+1+2Sn,
所以an+12-an+1=2Sn;
(Ⅱ)解:因为an+12-an+1=2Sn=2Sn+1-2an+1,
所以an+12+an+1=2Sn+1…③
则an2+an=2Sn…④
③-④得2an+1=(an+12-an2)+(an+1-an),
从而an+1-an=1.
又a1=1,所以数列{an}是以首项为a1=1,公差为1的等差数列
所以an=n;
(Ⅲ)证明:∵an=n,∴
| ||
|
| ||
| n2 |
| 1 | ||
|
| 2 | ||||
|
| 2 | ||||||
|
=
| 1 | ||
|
| 1 | ||
|
∴
| 1 | ||
|
| ||
|
| ||
|
| ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
点评:本题考查数列递推式,考查数列的通项,考查不等式的证明,正确求通项是关键.
练习册系列答案
相关题目