题目内容
【题目】如图,在四棱锥
中,底面
是矩形,面
底面
,且
是边长为
的等边三角形,
,
在
上,且
∥面BDM.
(1)求直线PC与平面BDM所成角的正弦值;
(2)求平面BDM与平面PAD所成锐二面角的大小.
![]()
【答案】(1)
;(2)
.
【解析】试题分析:
利用题意建立空间直角坐标系,据此可得:
(1) 直线PC与平面BDM所成角的正弦值为![]()
(2) 平面BDM与平面PAD所成锐二面角的大小为
.
试题解析:
解:因为
,
作AD边上的高PO,
则由
,由面面垂直的性质定理,得
,
又
是矩形,同理
,知
,
,故
.
以AD中点O为坐标原点,OA所在直线为x轴,OP所在直线为z轴,AD的垂直平分线y轴,建立如图所示的坐标系,则
,
连结AC交BD于点N,由
,
所以
,又N是AC的中点,
所以M是PC的中点,则
,设面BDM的法向量为
,
,
,得
,
令
,解得
,所以取
.
(1)设PC与面BDM所成的角为
,则
,
所以直线PC与平面BDM所成角的正弦值为
.
(2)面PAD的法向量为向量
,设面BDM与面PAD所成的锐二面角为
,
则
,故平面BDM与平面PAD所成锐二面角的大小为
.
练习册系列答案
相关题目