题目内容

设x1,x2为方程4x2-4mx+m+2=0的两个实根,当m为何实数值时,x12+x22有最小值,并求这个最小值.

答案:
解析:

  分析:关于x的一元二次方程4x2-4mx+m+2=0有两个实根,则它的判别式:Δ=(-4m)2-4×4(m+2)≥0,即m∈(-∞-1]∪[2,+∞),m取不到,不能忽视一元二次方程有实根的充要条件.

  正解:因为x1、x2是方程4x2-4mx+m+2=0的两个实根,由韦达定理,得x1+x2=m,x1·x2

  所以x12+x22=(x1+x2)2-2x1·x2=m2=(m-)2

  又因为Δ=(-4m)2-4×4(m+2)≥0,解得m≤-1或m≥2.可根据二次函数f(m)=(m-)2的草图,知当m=-1时,ymin

  点评:求函数值域、最值,解方程、不等式等均要考虑字母的取值范围,有些问题的定义域非常隐蔽.因此,我们要注意充分挖掘题目中的隐含条件.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网