题目内容

已知函数f(x)=a+bsin2x+ccos2x的图象经过点A(0,1),B(
π
4
,1),且当x∈[0,
π
4
]时,f(x)取得最大值2
2
-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)是否存在向量m,使得将f(x)的图象按向量m平移后可以得到一个奇函数的图象?若存在,求出满足条件的一个m;若不存在,说明理由.
(Ⅰ)由题意知
a+c=1
a+b=1
(2分)
∴b=c=1-a,
∴f(x)=a+
2
(1-a)sin(2x+
π
4
).(1分)
∵x∈[0,
π
4
],
∴2x+
π
4
∈[
π
4
4
].(1分)
当1-a>0时,
由a+
2
(1-a)=2
2
-1,
解得a=-1;    (2分)
当1-a<0时,
a+
2
(1-a)•
2
2
=2
2
-1,无解; (1分)
当1-a=0时,a=2
2
-1,相矛盾.(1分)
综上可知a=-1.(2分)
(Ⅱ)g(x)=2
2
sin2x
是奇函数,将g(x)的图象向左平移
π
8
个单位,再向下平移一个单位就可以得到f(x)的图象.因此,将f(x)的图象向右平移
π
8
个单位,再向上平移一个单位就可以得到奇函数g(x)=2
2
sin2x
的图象.故
m
=(
π
8
,1)
是满足条件的一个向量.(4分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网