题目内容
已知函数f(x)=cosx•cos(x-
)
(1)求f(
)的值;
(2)求使f(x)<
成立的x的取值集合.
| π |
| 3 |
(1)求f(
| 2π |
| 3 |
(2)求使f(x)<
| 1 |
| 4 |
(1)f(
)=cos
cos(
-
)=cos
cos
=-cos2
=-
;
(2)f(x)=cosxcos(x-
)=cosx(
cosx+
sinx)
=
cos2x+
sinxcosx=
(1+cos2x)+
sin2x=
cos(2x-
)+
,
∴f(x)<
,化为
cos(2x-
)+
<
,即cos(2x-
)<0,
∴2kπ+
<2x-
<2kπ+
(k∈Z),
解得:kπ+
<x<kπ+
(k∈Z),
则使f(x)<
成立的x取值集合为{x|kπ+
,kπ+
(k∈Z)}.
| 2π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 1 |
| 4 |
(2)f(x)=cosxcos(x-
| π |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 4 |
| ||
| 4 |
| 1 |
| 2 |
| π |
| 3 |
| 1 |
| 4 |
∴f(x)<
| 1 |
| 4 |
| 1 |
| 2 |
| π |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| π |
| 3 |
∴2kπ+
| π |
| 2 |
| π |
| 3 |
| 3π |
| 2 |
解得:kπ+
| 5π |
| 12 |
| 11π |
| 12 |
则使f(x)<
| 1 |
| 4 |
| 5π |
| 12 |
| 11π |
| 12 |
练习册系列答案
相关题目