题目内容
设椭圆C:| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
| ||
| 2 |
(Ⅰ)求椭圆C的方程;
(Ⅱ)当过点P(4,1)的动直线l与椭圆C相交于两不同点A,B时,在线段AB上取点Q,满足
|
| ||
|
|
|
| ||
|
|
分析:(Ⅰ)先根据离心率求得c,a的关系,则根据a,b和c的关系求得b,则椭圆的方程可得;
(Ⅱ)先设点Q(x,y),A(x1,y1),B(x2,y2),由题设
=
=λ.又P,A,Q,B四点共线,可得
=-λ
,
=λ
(λ≠0,±1)结合A(x1,y1),B(x2,y2)在椭圆C上,得到2x+y-2=0最后根据点Q(x,y)总在定直线2x+y-2=0上.即点Q的轨迹与λ无关.
(Ⅱ)先设点Q(x,y),A(x1,y1),B(x2,y2),由题设
|
| ||
|
|
|
| ||
|
|
| PA |
| AQ |
| PB |
| BQ |
解答:解(Ⅰ)由题意解得a2=4,b2=2,所求椭圆方程为
+
=1.
(Ⅱ)设点Q(x,y),A(x1,y1),B(x2,y2),由题设
=
=λ.
又P,A,Q,B四点共线,可得
=-λ
,
=λ
(λ≠0,±1),
于是x1=
,y1=
(1)x2=
,y2=
(2)
由于A(x1,y1),B(x2,y2)在椭圆C上,将(1),(2)分别代入C的方程x2+2y2=4,
整理得(x2+2y2-4)λ2-4(2x+y-2)λ+14=0(3)(x2+2y2-4)λ2+4(2x+y-2)λ+14=0(4)
(4)-(3)得8(2x+y-2)λ=0,∵λ≠0,∴2x+y-2=0,(
点Q(x,y)总在定直线2x+y-2=0上.即点Q的轨迹与λ无关.
| x2 |
| 4 |
| y2 |
| 2 |
(Ⅱ)设点Q(x,y),A(x1,y1),B(x2,y2),由题设
|
| ||
|
|
|
| ||
|
|
又P,A,Q,B四点共线,可得
| PA |
| AQ |
| PB |
| BQ |
于是x1=
| 4-λx |
| 1-λ |
| 1-λy |
| 1-λ |
| 4+λx |
| 1+λ |
| 1+λy |
| 1+λ |
由于A(x1,y1),B(x2,y2)在椭圆C上,将(1),(2)分别代入C的方程x2+2y2=4,
整理得(x2+2y2-4)λ2-4(2x+y-2)λ+14=0(3)(x2+2y2-4)λ2+4(2x+y-2)λ+14=0(4)
(4)-(3)得8(2x+y-2)λ=0,∵λ≠0,∴2x+y-2=0,(
点Q(x,y)总在定直线2x+y-2=0上.即点Q的轨迹与λ无关.
点评:本小题主要考查椭圆的标准方程、直线与圆锥曲线的综合问题等基础知识,考查运算求解能力与化归与转化思想.属于基础题.
练习册系列答案
相关题目