题目内容
6.在如图所示的几何体中,已知△BCD是等腰直角三角形且BD=CD,AB=BC=AC=2,AE=1,AE⊥平面ABC,平面BCD⊥平面ABC.(1)证明:AE∥平面BCD;
(2)证明:平面BDE⊥平面CDE.
分析 (1)取BC的中点M,连接DM、AM,由等腰三角形三线合一,可得DM⊥BC,进而由平面BCD⊥平面ABC,结合面面垂直的性质定理可得DM⊥平面ABC,再由AE⊥平面ABC,结合线面垂直的性质定理,可得AE∥DM,进而由线面平行的判定定理得到AE∥平面BCD;
(2)由(1)知AE∥DM,AE=DM,可由平行四边形的性质得DE∥AM,再由(1)得DM⊥AM,结合线面垂直的判定定理可得AM⊥平面BCD,即DE⊥平面BCD,进而DE⊥CD,再由BD⊥CD结合线面垂直的判定定理和面面垂直的判定定理得到平面BDE⊥平面CDE;
解答
证明:(1)取BC的中点M,连接DM、AM,由已知BD=CD,可得:DM⊥BC,
又因为平面BCD⊥平面ABC,平面BCD∩平面ABC=BC,
所以DM⊥平面ABC,
因为AE⊥平面ABC,所以AE∥DM,
又因为AE?平面BCD,DM?平面BCD,
所以AE∥平面BCD.(4分)
(2)由(1)知AE∥DM,又AE=1,CM=1,
所以四边形DMAE是平行四边形,则有DE∥AM,
由(1)得DM⊥AM,又AM⊥BC,
所以AM⊥平面BCD,所以DE⊥平面BCD,
又CD?平面BCD,所以DE⊥CD,
由已知BD⊥CD,DE∩BD=D,
所以CD⊥平面BDE,
因为CD?平面CDE,
所以平面BDE⊥平面CDE.
点评 本题考查的知识点是直线与平面平行的判定,平面与平面垂直的判定,是空间线面关系的基本应用.
练习册系列答案
相关题目
14.某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润50元,若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利润30元
(1)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式
(2)商店记录了50天该商品的日需求量n(单位:件)整理得表:
若商店一天购进10件该商品,以50天记录的各需求量发生的概率,求当天的利润在区间[400,500]的概率.
(1)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式
(2)商店记录了50天该商品的日需求量n(单位:件)整理得表:
| 日需求量 | 8 | 9 | 10 | 11 | 12 |
| 频数 | 9 | 11 | 15 | 10 | 5 |