题目内容
(本题满分12分)号码为1、2、3、4、5、6的六个大小相同的球,放入编号为1、2、3、4、5、6的六个盒子中,每个盒子只能放一个球.
(Ⅰ)若1号球只能放在1号盒子中,2号球只能放在2号的盒子中,则不同的放法有多少种?
(Ⅱ)若3号球只能放在1号或2号盒子中,4号球不能放在4号盒子中,则不同的放法有多少种?
(Ⅲ)若5、6号球只能放入号码是相邻数字的两个盒子中,则不同的放法有多少种?
(Ⅰ)24 (Ⅱ)192 (Ⅲ)240
【解析】(Ⅰ)1号球放在1号盒子中,2号球放在2号的盒子中有
(种).……4分
(Ⅱ)3号球只能放在1号或2号盒子中,则3号球有两种选择,4号球不能放在4号盒子中,则有4种选择,则3号球只能放在1号或2号盒子中,4号球不能放在4号盒子中有
(种). ………8分
(Ⅲ)号码是相邻数字的两个盒子有1与2、2与3、3与4、4与5、5与6共5种情况,
则符合题意的放法有
(种). ………12分
(本题满分12分)某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:
|
组号 |
分组 |
频数 |
频率 |
|
第一组 |
|
8 |
0.16 |
|
第二组 |
|
① |
0.24 |
|
第三组 |
|
15 |
② |
|
第四组 |
|
10 |
0.20 |
|
第五组 |
|
5 |
0.10 |
|
合 计 |
50 |
1.00 |
(1)写出表中①②位置的数据;
(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.
(本题满分12分)某工厂有甲、乙两个生产小组,每个小组各有四名工人,某天该厂每位工人的生产情况如下表.
|
|
员工号 |
1 |
2 |
3 |
4 |
|
甲组
|
件数 |
9 |
11 |
1l
|
9
|
|
|
员工号 |
1 |
2 |
3 |
4 |
|
乙组
|
件数 |
b 9 |
8 |
10 |
9 |
(1)用茎叶图表示两组的生产情况;
(2)求乙组员工生产件数的平均数和方差;
(3)分别从甲、乙两组中随机选取一名员工的生产件数,求这两名员工的生产总件数为19的概率.
(注:方差
,其中
为x1,x2,…,xn的平均数)
(本题满分12分)
某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示.
(1)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求第4组至少有一名学生被考官A面试的概率?![]()
|
组号 |
分组 |
频数 |
频率 |
|
第1组 |
|
5 |
0.050 |
|
第2组 |
|
① |
0.350 |
|
第3组 |
|
30 |
② |
|
第4组 |
|
20 |
0.200 |
|
第5组 |
|
10 |
0.100 |
|
合计 |
100 |
1.000 |
|