题目内容
在平面直角坐标系xOy中,设A,B,C是圆x2+y2=1上相异三点,若存在正实数λ,μ,使得
,则(λ-3)2+μ2的取值范围是
- A.(2,9)
- B.(4,10)
- C.(
) - D.(2,+∞)
D
分析:由
得μ2=1+λ2-2λ
,从而可构建函数f(λ)=(λ-3)2+μ2,即可求得(λ-3)2+μ2的取值范围.
解答:因为A,B,C互异,所以-1<
<1,
由
得μ2=1+λ2-2λ
则f(λ)=(λ-3)2+μ2=2λ2-6λ-2λ2
+10>2λ2-8λ+10≥2.
f(λ)=(λ-3)2+μ2=2λ2-6λ-2λ2
+10<2λ2-4λ+10,无最大值,
∴(λ-3)2+μ2的取值范围是(2,+∞).
故选D.
点评:本题考查向量知识的运用,考查函数的最值,确定函数解析式是关键.
分析:由
解答:因为A,B,C互异,所以-1<
由
则f(λ)=(λ-3)2+μ2=2λ2-6λ-2λ2
f(λ)=(λ-3)2+μ2=2λ2-6λ-2λ2
∴(λ-3)2+μ2的取值范围是(2,+∞).
故选D.
点评:本题考查向量知识的运用,考查函数的最值,确定函数解析式是关键.
练习册系列答案
相关题目
在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x-2y=0,则它的离心率为( )
A、
| ||||
B、
| ||||
C、
| ||||
| D、2 |