题目内容
已知向量
【答案】分析:先求出两个向量的和的坐标,再根据向量平行的充要条件写出关于m的等式,解方程得到要求的数值,注意公式不要用错公式.
解答:解:∵
+
=(1,m-1),
∵(
+
)∥
∴1×2-(m-1)×(-1)=0,
所以m=-1
故答案为:-1
点评:掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题,能用坐标形式的充要条件解决求值问题.
解答:解:∵
∵(
∴1×2-(m-1)×(-1)=0,
所以m=-1
故答案为:-1
点评:掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题,能用坐标形式的充要条件解决求值问题.
练习册系列答案
相关题目
已知向量
=(2,1),
•
=10,|
+
|=5
,则|
|=( )
| a |
| a |
| b |
| a |
| b |
| 2 |
| b |
A、
| ||
B、
| ||
| C、5 | ||
| D、25 |
已知向量
=(2,1),
=(x,3),且
∥
,则实数x的值为( )
| a |
| b |
| a |
| b |
A、
| ||
| B、3 | ||
| C、6 | ||
| D、9 |
已知向量
=(2,-1,3),
=(-4,2,x),且
⊥
,则实数x的值为( )
| a |
| b |
| a |
| b |
| A、-2 | ||
| B、2 | ||
C、-
| ||
D、
|