题目内容

已知函数f(x)=ax2-(2a+1)x+2lnx(a∈R),
(Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围。
解:
(Ⅰ),解得
(Ⅱ)
①当a≤0时,
在区间(0,2)上,f′(x)>0;在区间(2,+∞)上f′(x)<0,
故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);
②当
在区间(0,2)和上,f′(x)>0;在区间上f′(x)<0,
故f(x)的单调递增区间是(0,2)和,单调递减区间是
③当
故f(x)的单调递增区间是(0,+∞);
④当
在区间和(2,+∞)上,f′(x)>0;在区间上f′(x)<0,
故f(x)的单调递增区间是和(2,+∞),单调递减区间是
(Ⅲ)由已知,在(0,2]上有
由已知,
由(Ⅱ)可知,
①当时,f(x)在(0,2]上单调递增,

所以

②当时,f(x)在上单调递增,在上单调递减,


所以
综上所述,
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网