ÌâÄ¿ÄÚÈÝ
£¨2013•ºÍÆ½ÇøÒ»Ä££©ÒÑÖªÍÖÔ²CµÄÖÐÐÄÔÚ×ø±êԵ㣬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂÊΪ
£¬ËüµÄÒ»¸ö¶¥µãÇ¡ºÃÊÇÅ×ÎïÏßx2=4
yµÄ½¹µã£®
£¨I£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨II£©ÈôA¡¢BÊÇÍÖÔ²CÉϹØxÖá¶Ô³ÆµÄÈÎÒâÁ½µã£¬ÉèP£¨-4£¬0£©£¬Á¬½ÓPA½»ÍÖÔ²CÓÚÁíÒ»µãE£¬ÇóÖ¤£ºÖ±ÏßBEÓëxÖáÏཻÓÚ¶¨µãM£»
£¨III£©ÉèOÎª×ø±êԵ㣬ÔÚ£¨II£©µÄÌõ¼þÏ£¬¹ýµãMµÄÖ±Ïß½»ÍÖÔ²CÓÚS¡¢TÁ½µã£¬Çó
•
µÄȡֵ·¶Î§£®
| 1 |
| 2 |
| 3 |
£¨I£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨II£©ÈôA¡¢BÊÇÍÖÔ²CÉϹØxÖá¶Ô³ÆµÄÈÎÒâÁ½µã£¬ÉèP£¨-4£¬0£©£¬Á¬½ÓPA½»ÍÖÔ²CÓÚÁíÒ»µãE£¬ÇóÖ¤£ºÖ±ÏßBEÓëxÖáÏཻÓÚ¶¨µãM£»
£¨III£©ÉèOÎª×ø±êԵ㣬ÔÚ£¨II£©µÄÌõ¼þÏ£¬¹ýµãMµÄÖ±Ïß½»ÍÖÔ²CÓÚS¡¢TÁ½µã£¬Çó
| OS |
| OT |
·ÖÎö£º£¨1£©ÓÉÅ×ÎïÏßx2=4
yµÃ½¹µã(0£¬
)£®ÉèÍÖÔ²·½³ÌΪ
+
=1(a£¾b£¾0)£®ÓÉÌâÒâ¿ÉµÃb=
£¬ÔÙÀûÓÃe=
=
¼°a2=b2+c2¼´¿ÉµÃ³ö£»
£¨2£©ÓÉÌâÒâ¿ÉÖªÖ±ÏßPAµÄбÂÊ´æÔÚ£¬ÉèÖ±ÏßPAµÄ·½³ÌΪy=k£¨x+4£©£¬ÓëÍÖÔ²µÄ·½³ÌÁªÁ¢¼´¿ÉµÃµ½¸ùÓëϵÊýµÄ¹ØÏµ£®ÉèµãA£¨x1£¬y1£©£¬E£¨x2£¬y2£©£¬ÔòB£¨x1£¬-y1£©£®Ö±ÏßBEµÄ·½³ÌΪy-(-y2)=
(x-x2)£®°Ñy1£¬y2·Ö±ðÓÃx1£¬x2±íʾ£¬ÔÚ´úÈëÖ±ÏßBEµÄ·½³Ì¼´¿ÉµÃ³ö£»
£¨3£©µ±¹ýµãMµÄÖ±ÏßбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßSTµÄ·½³ÌΪy=m£¨x+1£©£¬ÇÒS£¨x3£¬y3£©£¬T£¨x4£¬y4£©ÔÚÍÖÔ²CÉÏ£¬ÓëÍÖÔ²µÄ·½³ÌÁªÁ¢µÃµ½¸ùÓëϵÊýµÄ¹ØÏµ¼°Åбðʽ£¬ÔÙÀûÓÃÏòÁ¿µÄÊýÁ¿»ý
•
£¬¼´¿ÉµÃ³öÆäÆäÖз¶Î§£®µ±¹ýµãMµÄÖ±ÏßбÂʲ»´æÔÚʱ£¬±È½Ï¼òµ¥£®
| 3 |
| 3 |
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
| c |
| a |
1-
|
£¨2£©ÓÉÌâÒâ¿ÉÖªÖ±ÏßPAµÄбÂÊ´æÔÚ£¬ÉèÖ±ÏßPAµÄ·½³ÌΪy=k£¨x+4£©£¬ÓëÍÖÔ²µÄ·½³ÌÁªÁ¢¼´¿ÉµÃµ½¸ùÓëϵÊýµÄ¹ØÏµ£®ÉèµãA£¨x1£¬y1£©£¬E£¨x2£¬y2£©£¬ÔòB£¨x1£¬-y1£©£®Ö±ÏßBEµÄ·½³ÌΪy-(-y2)=
| y2+y1 |
| x2-x1 |
£¨3£©µ±¹ýµãMµÄÖ±ÏßбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßSTµÄ·½³ÌΪy=m£¨x+1£©£¬ÇÒS£¨x3£¬y3£©£¬T£¨x4£¬y4£©ÔÚÍÖÔ²CÉÏ£¬ÓëÍÖÔ²µÄ·½³ÌÁªÁ¢µÃµ½¸ùÓëϵÊýµÄ¹ØÏµ¼°Åбðʽ£¬ÔÙÀûÓÃÏòÁ¿µÄÊýÁ¿»ý
| OS |
| OT |
½â´ð£º£¨1£©½â£ºÓÉÅ×ÎïÏßx2=4
yµÃ½¹µã(0£¬
)£®
ÉèÍÖÔ²·½³ÌΪ
+
=1(a£¾b£¾0)£®
ÓÉÌâÒâ¿ÉµÃ
£¬½âµÃ
£¬
¡àÍÖÔ²µÄ·½³ÌΪ
+
=1£®
£¨2£©Ö¤Ã÷£ºÓÉÌâÒâ¿ÉÖªÖ±ÏßPAµÄбÂÊ´æÔÚ£¬ÉèÖ±ÏßPAµÄ·½³ÌΪy=k£¨x+4£©£¬
ÁªÁ¢
£¬ÏûÈ¥yµÃµ½£¨4k2+3£©x2+32k2x+64k2-12=0 ¢Ù
ÉèµãA£¨x1£¬y1£©£¬E£¨x2£¬y2£©£¬ÔòB£¨x1£¬-y1£©£®
Ö±ÏßBEµÄ·½³ÌΪy-y2=
(x-x2)£®
Áîy=0£¬Ôòx=x2-
£¬
°Ñy1=k£¨x1+4£©£¬y2=k£¨x2+4£©´úÈëÉÏʽ²¢ÕûÀíµÃx=
£®¢Ú
ÓÉ¢ÙµÃx1+x2=-
£¬x1x2=
£¬½«Æä´úÈë¢Ú²¢ÕûÀíµÃx=
=-1£®
¡àÖ±ÏßBEÓëxÖáÏཻÓÚ¶¨µãM£¨-1£¬0£©£®
£¨3£©µ±¹ýµãMµÄÖ±ÏßбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßSTµÄ·½³ÌΪy=m£¨x+1£©£¬ÇÒS£¨x3£¬y3£©£¬T£¨x4£¬y4£©ÔÚÍÖÔ²CÉÏ£¬
ÁªÁ¢
µÃ£¨4m2+3£©x2+8m2x+4m2-12=0£¬
Ôò¡÷=£¨8m2£©2-4£¨4m2+3£©£¨4m2-12£©=144£¨m2+1£©£¾0£®
¡àx3+x4=-
£¬x3x4=
£¬
¡ày3y4=m2(x3+1)(x4+1)=m2£¨x3x4+x3+x4+1£©=-
£®
¡à
•
=x3x4+y3y4=-
=-
-
£®
ÓÉm2¡Ý0µÃ
•
¡Ê[-4£¬-
)£®
µ±¹ýµãMµÄÖ±ÏßбÂʲ»´æÔÚʱ£¬Ö±ÏßSTµÄ·½³ÌΪx=-1£¬S(-1£¬
)£¬T(-1£¬-
)£¬
´Ëʱ£¬
•
=-
£¬
¡à
•
µÄȡֵ·¶Î§Îª[-4£¬-
]£®
| 3 |
| 3 |
ÉèÍÖÔ²·½³ÌΪ
| x2 |
| a2 |
| y2 |
| b2 |
ÓÉÌâÒâ¿ÉµÃ
|
|
¡àÍÖÔ²µÄ·½³ÌΪ
| x2 |
| 4 |
| y2 |
| 3 |
£¨2£©Ö¤Ã÷£ºÓÉÌâÒâ¿ÉÖªÖ±ÏßPAµÄбÂÊ´æÔÚ£¬ÉèÖ±ÏßPAµÄ·½³ÌΪy=k£¨x+4£©£¬
ÁªÁ¢
|
ÉèµãA£¨x1£¬y1£©£¬E£¨x2£¬y2£©£¬ÔòB£¨x1£¬-y1£©£®
Ö±ÏßBEµÄ·½³ÌΪy-y2=
| y2+y1 |
| x2-x1 |
Áîy=0£¬Ôòx=x2-
| y2(x2-x1) |
| y2+y1 |
°Ñy1=k£¨x1+4£©£¬y2=k£¨x2+4£©´úÈëÉÏʽ²¢ÕûÀíµÃx=
| 2x1x2+4(x1+x2) |
| x1+x2+8 |
ÓÉ¢ÙµÃx1+x2=-
| 32k2 |
| 4k2+3 |
| 64k2-12 |
| 4k2+3 |
| (128k2-24)+4¡Á(-32k2) |
| -32k2+8(4k2+3) |
¡àÖ±ÏßBEÓëxÖáÏཻÓÚ¶¨µãM£¨-1£¬0£©£®
£¨3£©µ±¹ýµãMµÄÖ±ÏßбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßSTµÄ·½³ÌΪy=m£¨x+1£©£¬ÇÒS£¨x3£¬y3£©£¬T£¨x4£¬y4£©ÔÚÍÖÔ²CÉÏ£¬
ÁªÁ¢
|
Ôò¡÷=£¨8m2£©2-4£¨4m2+3£©£¨4m2-12£©=144£¨m2+1£©£¾0£®
¡àx3+x4=-
| 8m2 |
| 4m2+3 |
| 4m2-12 |
| 4m2+3 |
¡ày3y4=m2(x3+1)(x4+1)=m2£¨x3x4+x3+x4+1£©=-
| 9m2 |
| 4m2+3 |
¡à
| OS |
| OT |
| 5m2+12 |
| 4m2+3 |
| 5 |
| 4 |
| 33 |
| 4(4m2+3) |
ÓÉm2¡Ý0µÃ
| OS |
| OT |
| 5 |
| 4 |
µ±¹ýµãMµÄÖ±ÏßбÂʲ»´æÔÚʱ£¬Ö±ÏßSTµÄ·½³ÌΪx=-1£¬S(-1£¬
| 3 |
| 2 |
| 3 |
| 2 |
´Ëʱ£¬
| OS |
| OT |
| 5 |
| 4 |
¡à
| OS |
| OT |
| 5 |
| 4 |
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËÍÖÔ²¡¢Å×ÎïÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÔ²×¶ÇúÏßÏཻÎÊÌâת»¯ÎªÒ»Ôª¶þ´Î·½³ÌµÃ¸ùÓëϵÊýµÄ¹ØÏµ¡¢Ö±Ïß¹ý¶¨µãÎÊÌâ¡¢ÏòÁ¿ÏàµÈ¼°ÆäÊýÁ¿»ýµÈ»ù´¡ÖªÊ¶¼°»ù±¾¼¼ÄÜ£¬¿¼²éÁË·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨¡¢ÍÆÀíÄÜÁ¦ºÍ¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿