题目内容
已知函数f(x)=log3(ax-b)的图象过点A(2,1),B(5,2),
(1)求函数f(x)的解析式;
(2)记an=3f(n)(n∈N*),是否存在正数k,使得(1+
)(1+
)…(1+
)≥k
对一切n∈N*均成立,若存在,求出k的最大值;若不存在,说明理由.
(1)求函数f(x)的解析式;
(2)记an=3f(n)(n∈N*),是否存在正数k,使得(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 2n+1 |
(1)由题意得
,解得 a=2,b=-1,所以f(x)=log3(2x-1),
(2)因为an=3log3(2n-1)=2n-1.
假设存在正数k,使得(1+
)(1+
)…(1+
)≥k
对一切n∈N*均成立,
则k≤
(1+
)(1+
)…(1+
)恒成立.
记F(n)=
(1+
)(1+
)…(1+
).
则F(n+1)=
(1+
)(1+
)…(1+
)(1+
).
∵
=
=
>
=1.
∴.F(n+1)>F(n),所以F(n)是递增数列.
所以n1=时F(n)最小,最小值F(1)=
.
所以k≤
.即k的最大值为
.
|
(2)因为an=3log3(2n-1)=2n-1.
假设存在正数k,使得(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 2n+1 |
则k≤
| 1 | ||
|
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
记F(n)=
| 1 | ||
|
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
则F(n+1)=
| 1 | ||
|
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| an+1 |
∵
| F(n+1) |
| F(n) |
| 2n+2 | ||
|
| 2(n+1) | ||
|
| 2(n+1) |
| 2(n+1) |
∴.F(n+1)>F(n),所以F(n)是递增数列.
所以n1=时F(n)最小,最小值F(1)=
2
| ||
| 3 |
所以k≤
2
| ||
| 3 |
2
| ||
| 3 |
练习册系列答案
相关题目