题目内容

设函数f(x)=2sinxcosx-cos(2x-
π
6
).
(Ⅰ)求函数f(x)的最小正周期; 
(Ⅱ)当x∈[0,
3
]时,求函数f(x)的最大值及取得最大值时的x的值.
(Ⅰ)因为f(x)=2sinxcosx-cos(2x-
π
6

=sin2x-(cos2xcos
π
6
+sin2xsin
π
6

=
1
2
sin2x-
3
2
cos2x
=sin(2x-
π
3
),
所以f(x)=sin(2x-
π
3
).
函数f(x)的最小正周期为T=
2
=π.…(7分)
(Ⅱ)因为x∈[0,
3
],所以2x-
π
3
∈[-
π
3
,π]

所以,当2x-
π
3
=
π
2
,即x=
12
时,sin(2x-
π
3
)=1,
函数f(x)的最大值为1.…(13分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网