题目内容
5.已知数列{an}满足a1=0,a2=1,an+2=3an+1-2an.Sn是{an}的前n项和,则S5=26.分析 an+2=3an+1-2an,变形为an+2-an+1=2(an+1-an),a2-a1=1.利用等比数列的通项公式可得an+1-an=2n-1.即可得出.
解答 解:∵an+2=3an+1-2an,∴an+2-an+1=2(an+1-an),a2-a1=1-0=1.
∴数列{an+1-an}是等比数列,首项为1,公比为2.
∴an+1-an=2n-1.
∴a3=a2+2=3,a4=${a}_{3}+{2}^{2}$=7,${a}_{5}={a}_{4}+{2}^{3}$=15.
∴S5=0+1+3+7+15=26.
故答案为:26.
点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
15.为普及高中生安全逃生知识与安全防护能力,雅礼中学高一年级举办了高中生安全知识与安全逃生能力竞赛.该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛.先将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
(1)求出上表中的x,y,z,s,p的值;
(2)按规定,预赛成绩不低于90分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一1401班恰有甲、乙两名同学取得决赛资格.记高一1401班在决赛中进入前三名的人数为X,求X的分布列和数学期望.(我们认为决赛中各选手的水平相当,获得各名次的机会均等)
| 分数(分数段) | 频数(人数) | 频率 |
| [60,70) | 9 | x |
| [70,80) | y | 0.38 |
| [80,90) | 16 | 0.32 |
| [90,100) | z | s |
| 合 计 | p | 1 |
(2)按规定,预赛成绩不低于90分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一1401班恰有甲、乙两名同学取得决赛资格.记高一1401班在决赛中进入前三名的人数为X,求X的分布列和数学期望.(我们认为决赛中各选手的水平相当,获得各名次的机会均等)
17.已知实数x,y满足平面区域$D:\left\{\begin{array}{l}x+y-1≥0\\ 2x-y-2≤0\\ x-2y+2≥0\end{array}\right.$,则x2+y2的最大值为( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | $2\sqrt{2}$ | D. | 8 |