题目内容
已知数列{an}的前n项和是Sn,满足Sn=2an-1
(1)求数列{an}的通项an;
(2)设bn=
,求{bn}的前n项和Tn:
(1)求数列{an}的通项an;
(2)设bn=
| log2(1+Sn) | an |
分析:(1)当n=1时,代入可得a1=1,当n≥2时,可得an=2an-1,由等比数列的通项公式可得;
(2)由(1)可得Sn=2n-1,Tn=
+
+
+…+
由错位相减法可得.
(2)由(1)可得Sn=2n-1,Tn=
| 1 |
| 20 |
| 2 |
| 21 |
| 3 |
| 22 |
| n |
| 2n-1 |
解答:解:(1)当n=1时,S1=2a1-1,解得a1=1,
当n≥2时,an=Sn-Sn-1=2an-2an-1,可得an=2an-1,
故数列{an}是首项为1,公比为2的等比数列,
故数列{an}的通项an=2n-1
(2)由(1)可得Sn=2an-1=2•2n-1-1=2n-1,
∴bn=
=
=
,
∴Tn=
+
+
+…+
,①
两边同乘以
可得,
Tn=
+
+
+…+
,②
①-②可得
Tn=
+
+
+…+
-
=
-
=2-
,
∴Tn=4-
当n≥2时,an=Sn-Sn-1=2an-2an-1,可得an=2an-1,
故数列{an}是首项为1,公比为2的等比数列,
故数列{an}的通项an=2n-1
(2)由(1)可得Sn=2an-1=2•2n-1-1=2n-1,
∴bn=
| log2(1+Sn) |
| an |
| log22n |
| 2n-1 |
| n |
| 2n-1 |
∴Tn=
| 1 |
| 20 |
| 2 |
| 21 |
| 3 |
| 22 |
| n |
| 2n-1 |
两边同乘以
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 21 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
①-②可得
| 1 |
| 2 |
| 1 |
| 20 |
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| n |
| 2n |
=
1-
| ||
1-
|
| n |
| 2n |
| n+2 |
| 2n |
∴Tn=4-
| n+2 |
| 2n-1 |
点评:本题考查错位相减法求和,涉及等比数列的判定,属中档题.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |