题目内容
对于正整数k,用g(k)表示k的最大奇因数,如:g(1)=1,g(2)=1,g(3)=3,….记an=g(1)+g(2)+g(3)+…+g(2n),其中n是正整数.(I)写出a1,a2,a3,并归纳猜想an与an-1(n≥2,n∈N)的关系式;
(II)证明(I)的结论;
(Ⅲ)求an的表达式.
分析:(I)a1=g(1)+g(2)=2,a2=g(1)+g(2)+g(3)+g(4)=2+3+1=6,a3=g(1)+g(2)+g(3)+g(4)+g(5)+g(6)+
g(7)+g(8)=a2+g(5)+g(3)+g(7)+g(4)=6+5+3+7+1=6+42=22.猜想n≥2时,an=an-1+4n-1.
(II)若k为奇数,则g(k)=k;若k为偶数,则g(k)=g(k)=g(2-
)=g(
).若
为奇数,则g(k)=
;若
为偶数,则可重复上述步骤得到g(k).由此可知:an=4n-1+an-1.当n≥2时,an=an-1+4n-1成立.
(Ⅲ)当n≥2时,an-an-1=4n-1,故有an=(an-an-1)+(an-1+an-2)+…+(a2-a1)+a1=4n-1+4n-2+…+4+2=
+2=
,由此能求出{an}的表达式.
g(7)+g(8)=a2+g(5)+g(3)+g(7)+g(4)=6+5+3+7+1=6+42=22.猜想n≥2时,an=an-1+4n-1.
(II)若k为奇数,则g(k)=k;若k为偶数,则g(k)=g(k)=g(2-
| k |
| 2 |
| k |
| 2 |
| k |
| 2 |
| k |
| 2 |
| k |
| 2 |
(Ⅲ)当n≥2时,an-an-1=4n-1,故有an=(an-an-1)+(an-1+an-2)+…+(a2-a1)+a1=4n-1+4n-2+…+4+2=
| 4(1-4n-1) |
| 1-4 |
| 4n+2 |
| 3 |
解答:解:(I)a1=g(1)+g(2)=2,
a2=g(1)+g(2)+g(3)+g(4)=2+3+1=6.
a3=g(1)+g(2)+g(3)+g(4)+g(5)+g(6)+g(7)+g(8)
=a2+g(5)+g(3)+g(7)+g(4)=6+5+3+7+1=6+42=22
猜想n≥2时,an=an-1+4n-1.
(II)证明:若k为奇数,则g(k)=k;
若k为偶数,则g(k)=g(k)=g(2-
)=g(
).若
为奇数,则g(k)=
;
反之,若
为偶数,则可重复上述步骤得到g(k)
由此可知:n≥2时,
an=g(1)+g(2)+g(3)+…+g(2n)
=1+3+5+…(2n-1)+g(2)+g(4)+g(6)+…g(2n)
=1+3+5+…+(2n-1)+g(2)+g(4)+g(6)+…g(2n)
=
+g(1)+g(2)+…g(2n-1)
=4n-1+an-1.
即当n≥2时,an=an-1+4n-1成立
(Ⅲ)由(I)知,当n≥2时,an-an-1=4n-1,故有an=(an-an-1)+(an-1+an-2)+…+(a2-a1)+a1=4n-1+4n-2+…+4+2=
+2=
,
a1也满足此式.
故an =
(n∈N,且n≥1)
a2=g(1)+g(2)+g(3)+g(4)=2+3+1=6.
a3=g(1)+g(2)+g(3)+g(4)+g(5)+g(6)+g(7)+g(8)
=a2+g(5)+g(3)+g(7)+g(4)=6+5+3+7+1=6+42=22
猜想n≥2时,an=an-1+4n-1.
(II)证明:若k为奇数,则g(k)=k;
若k为偶数,则g(k)=g(k)=g(2-
| k |
| 2 |
| k |
| 2 |
| k |
| 2 |
| k |
| 2 |
反之,若
| k |
| 2 |
由此可知:n≥2时,
an=g(1)+g(2)+g(3)+…+g(2n)
=1+3+5+…(2n-1)+g(2)+g(4)+g(6)+…g(2n)
=1+3+5+…+(2n-1)+g(2)+g(4)+g(6)+…g(2n)
=
| 2n-1[1+(2n-1)] |
| 2 |
=4n-1+an-1.
即当n≥2时,an=an-1+4n-1成立
(Ⅲ)由(I)知,当n≥2时,an-an-1=4n-1,故有an=(an-an-1)+(an-1+an-2)+…+(a2-a1)+a1=4n-1+4n-2+…+4+2=
| 4(1-4n-1) |
| 1-4 |
| 4n+2 |
| 3 |
a1也满足此式.
故an =
| 4n+2 |
| 3 |
点评:本题考查数列的性质和应用,解题时要注意公式的灵活运用,合理地进行等价转化.
练习册系列答案
相关题目