题目内容

若实数x,y满足不等式组数学公式,则3x+4y的最小值是


  1. A.
    13
  2. B.
    15
  3. C.
    20
  4. D.
    28
A
分析:我画出满足不等式组的平面区域,求出平面区域中各角点的坐标,然后利用角点法,将各个点的坐标逐一代入目标函数,比较后即可得到3x+4y的最小值.
解答:解:满足约束条件的平面区域如下图所示:
由图可知,当x=3,y=1时
3x+4y取最小值13
故选A
点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网