题目内容
(1)已知tanα=
,求
的值;
(2)化简:
.
| 1 |
| 3 |
| 1 |
| 2sinαcosα+cos2α |
(2)化简:
tan(π-α)cos(2π-α)sin(-α+
| ||
| cos(-α-π)sin(-π-α) |
(1)∵tanα=
,
∴原式=
=
=
=
.
(2)
=
=
=-1.
| 1 |
| 3 |
∴原式=
| sin2α+cos2α |
| 2sinαcosα+cos2α-sin2α |
| tan2α+1 |
| 2tanα+1-tan2α |
| ||||
2×
|
| 5 |
| 7 |
(2)
tan(π-α)cos(2π-α)sin(-α+
| ||
| cos(-α-π)sin(-π-α) |
-tanαcos(-α)sin(α+
| ||
| -cosαsinα |
| ||
| -sinα |
练习册系列答案
相关题目