题目内容

15、已知⊙O的割线PAB交⊙OA,B两点,割线PCD经过圆心,若PA=3,AB=4,PO=5,则⊙O的半径为
2

分析:由于PAB与PCD是圆的两条割线,且PA=3,AB=4,PO=5,我们可以设圆的半径为R,然后根据切割线定理构造一个关于R的方程,解方程即可求解.
解答:解:设⊙O的半径为R
则PC=PO-OC=5-R
PD=PO+OD=5+R
又∵PA=3,AB=4,
∴PB=PA+AB=7
由切割线定理易得:
PA•PB=PC•PD
即3×7=(5-R)×(5+R)
解得R=2
故答案:2
点评:本题考查的知识点是与圆相关的比例线段,设出未知的线段根据圆幂定理列出满足条件的方程是解答的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网