题目内容
已知F是抛物线y2=4x的焦点,Q是抛物线的准线与x轴的交点,直线l经过点Q.(Ⅰ)若直线l与抛物线恰有一个交点,求l的方程;
(Ⅱ)如题20图,直线l与抛物线交于A、B两点,
(ⅰ)记直线FA、FB的斜率分别为k1、k2,求k1+k2的值;
(ⅱ)若线段AB上一点R满足
【答案】分析:(Ⅰ)依题意得:Q(-1,0),直线l斜率存在,设其斜率为k,则l的方程为y=k(x+1),代入抛物线方程有:k2x2+(2k2-4)x+k2=0,对k进行讨论,从而得解;
(Ⅱ)(ⅰ)记A(x1,y1),B(x2,y2),分别用坐标表示直线FA、FB的斜率分别为k1、k2,利用韦达定理,从而可求k1+k2的值;
(ⅱ)设点R的坐标为(x,y),利用
,可得
,故可求
从而可得点R的轨迹.
解答:解:依题意得:Q(-1,0),直线l斜率存在,设其斜率为k,则l的方程为y=k(x+1),代入抛物线方程有:k2x2+(2k2-4)x+k2=0…(2分)
(Ⅰ)若k≠0,令△=0得,k=±1,此时l的方程为y=x+1,y=-x-1.
若k=0,方程有唯一解.此时l的方程为y=0…(4分)
(Ⅱ)显然k≠0,记A(x1,y1),B(x2,y2),
则
,
,y1y2=k2(x1x2+x1+x2+1)=4…(6分)
(ⅰ)
…(8分)
(ⅱ)设点R的坐标为(x,y),
∵
,
∴
,
∴
∴
…(10分)
由△>0得,-1<k<1,又k≠0,
∴y∈(-2,0)∪(0,2).
综上,点R的轨迹为x=1,y∈(-2,0)∪(0,2)…(12分)
点评:本题以抛物线为载体,考查直线与抛物线的位置关系,考查轨迹的探求,有一定的综合性.
(Ⅱ)(ⅰ)记A(x1,y1),B(x2,y2),分别用坐标表示直线FA、FB的斜率分别为k1、k2,利用韦达定理,从而可求k1+k2的值;
(ⅱ)设点R的坐标为(x,y),利用
从而可得点R的轨迹.
解答:解:依题意得:Q(-1,0),直线l斜率存在,设其斜率为k,则l的方程为y=k(x+1),代入抛物线方程有:k2x2+(2k2-4)x+k2=0…(2分)
(Ⅰ)若k≠0,令△=0得,k=±1,此时l的方程为y=x+1,y=-x-1.
若k=0,方程有唯一解.此时l的方程为y=0…(4分)
(Ⅱ)显然k≠0,记A(x1,y1),B(x2,y2),
则
(ⅰ)
(ⅱ)设点R的坐标为(x,y),
∵
∴
∴
∴
由△>0得,-1<k<1,又k≠0,
∴y∈(-2,0)∪(0,2).
综上,点R的轨迹为x=1,y∈(-2,0)∪(0,2)…(12分)
点评:本题以抛物线为载体,考查直线与抛物线的位置关系,考查轨迹的探求,有一定的综合性.
练习册系列答案
相关题目
已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为( )
A、
| ||
| B、1 | ||
C、
| ||
D、
|