题目内容
求定积分∫10(xex2+x2e2)dx.
| ∫ | 10 |
| ∫ | 10 |
| ∫ | 10 |
其中
| ∫ | 10 |
| 1 |
| 2 |
| ∫ | 10 |
| 1 |
| 2 |
|
| 1 |
| 2 |
∫01(x2e2)dx=e2∫01x2dx=e2×
[
| 10 |
| e2 |
| 3 |
∴∫10(xex2+x2e2)dx=-∫01(xex2+x2e2)dx=-[
| 1 |
| 2 |
| e2 |
| 3 |
| e2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目
题目内容
| ∫ | 10 |
| ∫ | 10 |
| ∫ | 10 |
| ∫ | 10 |
| 1 |
| 2 |
| ∫ | 10 |
| 1 |
| 2 |
|
| 1 |
| 2 |
[
| 10 |
| e2 |
| 3 |
| 1 |
| 2 |
| e2 |
| 3 |
| e2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |