题目内容
已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(I)求数列{an}的通项公式;
(II)证明:
| n |
| 2 |
| 1 |
| 3 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
分析:(I)数列的递推公式求数列的通项公式,根据等比数列的定义,只要证明an+1+1=2(an+1),从而可求数列{an}的通项公式;
(II)根据数列的通项公式得
=
=
<
,k=1,2,,n,再对其进行适当的放缩即可.
(II)根据数列的通项公式得
| ak |
| ak+1 |
| 2k-1 |
| 2k+1-1 |
| 2k-1 | ||
2(2k-
|
| 1 |
| 2 |
解答:解:(I)∵an+1=2an+1(n∈N*),∴an+1+1=2(an+1),
∴{an+1}是以a1+1=2为首项,2为公比的等比数列.∴an+1=2n.
即an=2n-1(n∈N*).
(II)证明:∵
=
=
<
,k=1,2,,n,
∴
+
++
<
.
∵
=
=
-
=
-
≥
-
.
,k=1,2,,n,
∴
+
++
≥
-
(
+
++
)=
-
(1-
)>
-
,
∴
-
<
+
++
<
(n∈N*).
∴{an+1}是以a1+1=2为首项,2为公比的等比数列.∴an+1=2n.
即an=2n-1(n∈N*).
(II)证明:∵
| ak |
| ak+1 |
| 2k-1 |
| 2k+1-1 |
| 2k-1 | ||
2(2k-
|
| 1 |
| 2 |
∴
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
∵
| ak |
| ak+1 |
| 2k-1 |
| 2k+1-1 |
| 1 |
| 2 |
| 1 |
| 2(2k+1-1) |
| 1 |
| 2 |
| 1 |
| 3.2k+2k-2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2k |
∴
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
| n |
| 2 |
| 1 |
| 3 |
∴
| n |
| 2 |
| 1 |
| 3 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
点评:由数列的递推公式,通过构造新的等比数列求数列的通项公式,是常考知识点,特别注意新数列的首项,裂项求和是常考数列求和的方法,并通过放缩法证明不等式.此题非常好,很典型.
练习册系列答案
相关题目