题目内容
已知函数f(x)=sinxcosx+cos2x-
.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函数f(x)在[-
,
]的最大值和最小值.
| 1 |
| 2 |
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函数f(x)在[-
| π |
| 8 |
| π |
| 2 |
(Ⅰ)由已知,得f(x)=
sin2x+
cos2x=
sin(2x+
),
∵ω=2,∴T=π,
则f(x)的最小正周期为π;
(Ⅱ)∵-
≤x≤
,∴0≤2x+
≤
,
则当2x+
=
时,即x=
时,f(x)取得最大值
;
当2x+
=
时,即x=
时,f(x)取得最小值-
.
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
∵ω=2,∴T=π,
则f(x)的最小正周期为π;
(Ⅱ)∵-
| π |
| 8 |
| π |
| 2 |
| π |
| 4 |
| 5π |
| 4 |
则当2x+
| π |
| 4 |
| π |
| 2 |
| π |
| 8 |
| ||
| 2 |
当2x+
| π |
| 4 |
| 5π |
| 4 |
| π |
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目