题目内容

已知数列{an}满足:a1=
1
2
,an+1=
n+1
2n
an,数列{bn}满足nbn=an(n∈N*).
(1)证明数列{bn}是等比数列,并求其通项公式:
(2)求数列{an}的前n项和Sn
分析:(1)根据等比数列的定义证明数列是等比数列,求出首项和公比即可求等比数列的通项公式.
(2)由(1)可得an=nbn=
n
2n
.利用“错位相减法”即可得到Sn
解答:(1)证明:∵数列{bn}满足nbn=an(n∈N*),得bn=
an
n

由an+1=
n+1
2n
an,可得
an+1
n+1
=
1
2
an
n
,∴bn+1=
1
2
bn

b1=a1=
1
2
,∴数列{bn}是等比数列,首项为
1
2
,公比为
1
2

bn=
1
2
×(
1
2
)n-1
=(
1
2
)n

(2)解:由(1)可得an=nbn=
n
2n

∴Sn=
1
2
+
2
22
+
3
23
+…+
n
2n

1
2
Sn=
1
22
+
2
23
+…+
n-1
2n
+
n
2n+1

1
2
Sn
=
1
2
+
1
22
+…+
1
2n
-
n
2n+1
=
1
2
(1-
1
2n
)
1-
1
2
-
n
2n+1
=1-
1
2n
-
n
2n+1

∴Sn=2-
2+n
2n
点评:本题考查了等比数列的通项公式及其前n项和公式、“错位相减法”等基础知识与基本技能方法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网