题目内容

【题目】设m,n∈R,定义在区间[m,n]上的函数f(x)=log2(4﹣|x|)的值域是[0,2],若关于t的方程( |t|+m+1=0(t∈R)有实数解,则m+n的取值范围是

【答案】[1,2)
【解析】解:∵函数f(x)=log2(4﹣|x|)的值域是[0,2],
∴1≤4﹣|x|≤4,
∴0≤|x|≤3,
∴m=﹣3,0≤n≤3,或﹣3≤m≤0,n=3;
又∵关于t的方程( |t|+m+1=0(t∈R)有实数解,
∴m=﹣(( |t|+1),
∵1<( |t|+m+1≤2,
∴﹣2≤m<﹣1,
则n=3,
则1≤m+n<2,
即答案为:[1,2).
由函数f(x)=log2(4﹣|x|)的值域是[0,2],可解得m=﹣3,0≤n≤3,或﹣3≤m≤0,n=3;又由关于t的方程( |t|+m+1=0(t∈R)有实数解可解得﹣2≤m<﹣1,则n=3,从而求m+n的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网