题目内容
【题目】设m,n∈R,定义在区间[m,n]上的函数f(x)=log2(4﹣|x|)的值域是[0,2],若关于t的方程(
)|t|+m+1=0(t∈R)有实数解,则m+n的取值范围是 .
【答案】[1,2)
【解析】解:∵函数f(x)=log2(4﹣|x|)的值域是[0,2],
∴1≤4﹣|x|≤4,
∴0≤|x|≤3,
∴m=﹣3,0≤n≤3,或﹣3≤m≤0,n=3;
又∵关于t的方程(
)|t|+m+1=0(t∈R)有实数解,
∴m=﹣((
)|t|+1),
∵1<(
)|t|+m+1≤2,
∴﹣2≤m<﹣1,
则n=3,
则1≤m+n<2,
即答案为:[1,2).
由函数f(x)=log2(4﹣|x|)的值域是[0,2],可解得m=﹣3,0≤n≤3,或﹣3≤m≤0,n=3;又由关于t的方程(
)|t|+m+1=0(t∈R)有实数解可解得﹣2≤m<﹣1,则n=3,从而求m+n的取值范围.
练习册系列答案
相关题目
【题目】为了调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
男 | 女 | 总计 | |
需要帮助 | 40 | m | 70 |
不需要帮助 | n | 270 | s |
总计 | 200 | t | 500 |
(1)求m,n,s,t的值;
(2)估计该地区老年人中,需要志愿者提供帮助的比例;
(3)能否有99%的把握认为该地区的老年人是否需要志愿者帮助与性别有关.
参考公式:
随机变量K2=
,n=a+b+c+d
在2×2列联表:
y1 | y2 | 总计 | |
x1 | a | b | a+b |
x2 | c | d | c+d |
总计 | a+c | b+d | a+b+c+d |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |