题目内容

在△ABC中,a、b、c分别是角A、B、C的对边,且A=
π
3

(1)若a=1,面积S△ABC=
3
4
,求b+c的值;
(2)求
a
b-c
•sin(
π
3
-C)
的值(注意,此问只能使用题干的条件,不能用(1)问的条件).
分析:(1)由A的度数求出sinA的值,利用三角形的面积公式表示出三角形ABC的面积,将sinA以及已知面积代入求出bc的值,利用余弦定理表示出cosA,将a及cosA的值代入,整理得到b2+c2的值,利用完全平方公式即可求出b+c的值;
(2)利用正弦定理化简已知等式,将A的度数代入,利用两角和与差的正弦函数公式化简,约分即可得到结果.
解答:解:(1)∵A=
π
3
,S△ABC=
1
2
bcsinA=
3
4
bc=
3
4

∴bc=1,
由余弦定理得:
1
2
=cosA=
b2+c2-a2
2bc
=
b2+c2-1
2

整理得:b2+c2=2,
∴(b+c)2=b2+c2+2bc=4,
∴b+c=2;
(2)由正弦定理知
a
b-c
•sin(
π
3
-C)=
sinA
sinB-sinC
•sin(
π
3
-C)
=
3
2
sin(
π
3
-C)
sin(
3
-C)-sinC
=
3
2
sin(
π
3
-C)
3
2
cosC-
1
2
sinC
=
3
2
sin(
π
3
-C)
sin(
π
3
-C)
=
3
2
点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网