题目内容
在四棱锥P-ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,PA⊥底面ABCD,PD与底面成30°角.
![]()
(1)若AE⊥PD,E为垂足,求证:BE⊥PD;
(2)在(1)的条件下,求异面直线AE与CD所成角的余弦值;
(3)求平面PAB与平面PCD所成的锐二面角的正切值.
答案:
解析:
解析:
|
解法:(1)如图建立空间直角坐标系,
(2)由(1)知, |
练习册系列答案
相关题目