ÌâÄ¿ÄÚÈÝ
12£®£¨1£©µ±AM=$\frac{3}{2}$kmʱ£¬Çó·À»¤ÍøµÄ×ܳ¤¶È£»
£¨2£©ÈôÒªÇóÍÚÈ˹¤ºþÓõء÷OMNµÄÃæ»ýÊǶѼÙɽÓõء÷OAMµÄÃæ»ýµÄ$\sqrt{3}$±¶£¬ÊÔÈ·¶¨¡ÏAOMµÄ´óС£»
£¨3£©Îª½ÚʡͶÈë×ʽð£¬È˹¤ºþ¡÷OMNµÄÃæ»ýÒª¾¡¿ÉÄÜС£¬ÎÊÈçºÎÉè¼ÆÊ©¹¤·½°¸£¬¿Éʹ¡÷OMN µÄÃæ»ý×îС£¿×îÐ¡Ãæ»ýÊǶàÉÙ£¿
·ÖÎö £¨1£©Ö¤Ã÷¡÷OANΪÕýÈý½ÇÐΣ¬¿ÉµÃ¡÷OANµÄÖܳ¤Îª9£¬¼´·À»¤ÍøµÄ×ܳ¤¶ÈΪ9km£»
£¨2£©ÀûÓá÷OMNµÄÃæ»ýÊǶѼÙɽÓõء÷OAMµÄÃæ»ýµÄ$\sqrt{3}$±¶£¬½¨Á¢·½³Ì£¬Çó³öON=6$\sqrt{3}$sin¦È£¬ÓÉ$\frac{ON}{sin60¡ã}$=$\frac{OA}{sin£¨¦È+60¡ã+30¡ã£©}$=$\frac{3}{cos¦È}$£¬µÃON=$\frac{3\sqrt{3}}{2cos¦È}$£¬¼´¿ÉÇó³ö¡ÏAOMµÄ´óС£»
£¨3£©±íʾ³ö¡÷OMN µÄÃæ»ý£¬ÀûÓø¨Öú½Ç¹«Ê½»¯¼ò£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©ÔÚ¡÷OABÖУ¬ÒòΪOA=3£¬OB=3$\sqrt{3}$£¬¡ÏAOB=90¡ã£¬ËùÒÔ¡ÏOAB=60¡ã£¬
ÔÚ¡÷AOMÖУ¬OA=3£¬AM=$\frac{3}{2}$£¬¡ÏOAM=60¡ã£¬
ÓÉÓàÏÒ¶¨Àí£¬µÃOM=$\frac{3\sqrt{3}}{2}$£¬¡£¨2·Ö£©
ËùÒÔOM2+AM2=OA2£¬¼´OM¡ÍAN£¬ËùÒÔ¡ÏAOM=30¡ã£¬
ËùÒÔ¡÷OANΪÕýÈý½ÇÐΣ¬ËùÒÔ¡÷OANµÄÖܳ¤Îª9£¬¼´·À»¤ÍøµÄ×ܳ¤¶ÈΪ9km£®¡£¨4·Ö£©
£¨2£©Éè¡ÏAOM=¦È£¨0¡ã£¼¦È£¼60¡ã£©£¬
ÒòΪ¡÷OMNµÄÃæ»ýÊǶѼÙɽÓõء÷OAMµÄÃæ»ýµÄ$\sqrt{3}$±¶£¬
ËùÒÔ$\frac{1}{2}ON•OM$sin30¡ã=$\sqrt{3}$¡Á$\frac{1}{2}$OA•OMsin¦È£¬¼´ON=6$\sqrt{3}$sin¦È£¬¡£¨6·Ö£©
ÔÚ¡÷OANÖУ¬ÓÉ$\frac{ON}{sin60¡ã}$=$\frac{OA}{sin£¨¦È+60¡ã+30¡ã£©}$=$\frac{3}{cos¦È}$£¬µÃON=$\frac{3\sqrt{3}}{2cos¦È}$£¬¡£¨8·Ö£©
´Ó¶ø6$\sqrt{3}$sin¦È=$\frac{3\sqrt{3}}{2cos¦È}$£¬¼´sin2¦È=$\frac{1}{2}$£¬
ÓÉ0¡ã£¼2¦È£¼120¡ã£¬
µÃ2¦È=30¡ã£¬ËùÒÔ¦È=15¡ã£¬¼´¡ÏAOM=15¡ã£®¡£¨10·Ö£©
£¨3£©Éè¡ÏAOM=¦È£¨0¡ã£¼¦È£¼60¡ã£©£¬ÓÉ£¨2£©ÖªON=$\frac{3\sqrt{3}}{2cos¦È}$£¬
ÓÖÔÚ¡÷AOMÖУ¬ÓÉ$\frac{OM}{sin60¡ã}$=$\frac{OA}{sin£¨¦È+60¡ã£©}$£¬µÃOM=$\frac{3\sqrt{3}}{2sin£¨¦È+60¡ã£©}$£¬¡£¨12·Ö£©
ËùÒÔS¡÷OMN=$\frac{1}{2}OM•ON•sin30¡ã$=$\frac{27}{16sin£¨¦È+60¡ã£©cos¦È}$=$\frac{27}{8sin£¨2¦È+60¡ã£©+4\sqrt{3}}$£¬¡£¨14·Ö£©
ËùÒÔµ±ÇÒ½öµ±2¦È+60¡ã=90¡ã£¬¼´¦È=15¡ãʱ£¬¡÷OMNµÄÃæ»ýÈ¡×îСֵΪ$\frac{27£¨2-\sqrt{3}£©}{4}$km2£®¡£¨16·Ö£©
µãÆÀ ±¾Ì⿼²éÀûÓÃÊýѧ֪ʶ½â¾öÈý½ÇÐÎÎÊÌ⣬¿¼²éÓàÏÒ¶¨Àí¡¢ÕýÏÒ¶¨ÀíµÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | 1 | B£® | 1»ò-2 | C£® | -1»ò2 | D£® | -1»ò-2 |