题目内容
△ABC中,角A、B、C的对边分别为a、b、c且b2+c2-a2+bc=0,则
等于( )
| asin(30°-C) |
| b-c |
A.
| B.
| C.
| D.
|
∵△ABC中,b2+c2=a2-bc
∴根据余弦定理,得cosA=
=-
∵A∈(0,π),∴A=
由正弦定理,得
=
=
=2R,
∴
=
=
∵sin(
-C)-sinC=
cosC-
sinC-sinC=
(
cosC-
sinC)
∴原式=
=
故选:A
∴根据余弦定理,得cosA=
| b2+c2-a2 |
| 2bc |
| 1 |
| 2 |
∵A∈(0,π),∴A=
| 2π |
| 3 |
由正弦定理,得
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
∴
| asin(30°-C) |
| b-c |
| 2RsinAsin(30°-C) |
| 2R(sinB-sinC) |
| ||||||||||
sin(
|
∵sin(
| π |
| 3 |
| ||
| 2 |
| 1 |
| 2 |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
∴原式=
| ||||||||||
|
| 1 |
| 2 |
故选:A
练习册系列答案
相关题目