题目内容
(12分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明 PA//平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C-PB-D的大小.
![]()
解:(1)证明:连结AC,AC交BD于O.连结EO.
∵ 底面ABCD是正方形,∴ 点O是AC的中点.
在△PAC中,EO是中位线,∴ PA//EO.
而
平面EDB,且
平面EDB,所以,PA//平面EDB.
(2)证明:∵ PD⊥底面ABCD,且
底面ABCD,
∴ PD⊥DC.
∵ 底面ABCD是正方形,有DC⊥BC, ∴ BC⊥平面PDC.
而
平面PDC,∴ BC⊥DE.
又∵PD=DC,E是PC的中点,∴ DE⊥PC.
∴ DE⊥平面PBC.
而
平面PBC,∴ DE⊥PB.
又EF⊥PB,且
,所以PB⊥平面EFD.
(3)解:由(2))知,PB⊥DF,故∠EFD是二面角C-PB-D的平面角
由(2)知,DE⊥EF,PD⊥DB.
设正方形ABCD的边长为a,则![]()
![]()
在
中,
.
在
中,
.
所以,二面角C-PB-D的大小为60°.
解析:
同答案
练习册系列答案
相关题目