题目内容
(12分)已知奇函数![]()
(1)求实数m的值,并在给出的直角坐标系中画出
的图象;
(2)若函数
在区间[-1,
-2]上单调递增,试确定
的取值范围.
![]()
【答案】
(1)略
(2)(1,3)
【解析】解:(1)设x<0,则-x>0,
所以f(-x)=-(-x)2+2(-x)=-x2-2x,
又f(x)为奇函数,所以f(-x)=-f(x),
于是x<0时,f(x)=x2+2x=x2+mx,
所以m=2.
(2)要使f(x)在[-1,a-2]上单调递增,
结合f(x)的图象知
所以1<a≤3,故实数a的取值范围是(1,3].
练习册系列答案
相关题目