题目内容

如图,已知椭圆右顶A20P2e)在椭上(e为椭圆的离心率).

1)求椭圆的方程

2若点BCC在第一象限)都在椭圆上,满足,且,求实数λ的值.

 

【答案】

1,(2.

【解析】

试题分析:(1)求椭圆方程,基本方法是待定系数法.关键是找全所需条件. 椭圆中三个未知数的确定只需两个独立条件,本题椭圆经过两点,就是两个独立条件,(2)直线与椭圆位置关系问题就要从其位置关系出发,本题中条件一是平行关系,二是垂直关系.设直线的斜率就可表示点及点再利用就可列出关于斜率及λ的方程组.得到,可利用类比得到两式相除可解得代入可得

试题解析:1由条件,代入椭圆方程,

2]

所以椭圆的方程为 5

2)设直线OC的斜率为

则直线OC方程为

代入椭圆方程

7

又直线AB方程为

代入椭圆方程

9

在第一象限, 12

15

16

考点:椭圆方程,直线与椭圆位置关系.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网