题目内容
(1)求{xn},{yn}的通项公式;
(2)设an=
| 1 |
| 1+xn |
| 1 |
| 1-xn+1 |
| 1 |
| 2 |
(3)设bn=1-log2yn,若对任意正整数n,不等式(1+
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 2n+3 |
分析:(1)由已知得抛物线方程为y=x2,y′=2x,设过点An(xn,yn)的切线为y-xn2=2xn(x-xn),令y=0和x=0,即可求出{xn},{yn}的通项公式.
(2)由(1)知xn=
,代入可得an=
+
=
+
=2-(
-
),从而Tn=a1+a2+a3+…+an>2n-[(
-
)+(
-
)+…+(
-
)]=2n-(
-
)>2n-
,于是结论即可证得.
(3)由于yn=
,可得bn=2n+1,则可得不等式(1+
)(1+
)…(1+
)≥a
,分离系数a,可得a≤
(1+
)(1+
)…(1+
),然后令f(n)=
(1+
)(1+
)…(1+
),根据函数的单调性解决a的取值范围.
(2)由(1)知xn=
| 1 |
| 2n |
| 1 | ||
1+
|
| 1 | ||
1-
|
| 2n |
| 2n+ 1 |
| 2n+1 |
| 2n+1-1 |
| 1 |
| 2n+ 1 |
| 1 |
| 2n+1-1 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
(3)由于yn=
| 1 |
| 4n |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 2n+3 |
| 1 | ||
|
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 | ||
|
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
解答:解:(1)由已知得抛物线方程为y=x2,y′=2x,
则设过点An(xn,yn)的切线为y-xn2=2xn(x-xn),
令y=0,x=
,故xn-1=
,
又x0=1,∴xn=
,yn=
,
(2)证明:由(1)知xn=
,
所以an=
+
=
+
=2-(
-
),
由于
<
,
>
,
得
-
<
-
,
∴an=2-(
-
)>2-(
-
),
从而Tn=a1+a2+a3+…+an>2n-[(
-
)+(
-
)+…+(
-
)]=2n-(
-
)>2n-
,
即Tn>2n-
,
(3)由于yn=
,故bn=2n+1,
对于任意正整数n,不等式(1+
)(1+
)…(1+
)≥a
,
a≤
(1+
)(1+
)…(1+
)恒成立,
设f(n)=
(1+
)(1+
)…(1+
),
∴f(n+1)=
(1+
)(1+
)…(1+
)(1+
),
=
•(1+
)=
•
=
=
>1,
∴f(n+1)>f(n),故f(n)为递增,
∴f(n)min=f(1)=
•
=
,
∴0<a≤
.
则设过点An(xn,yn)的切线为y-xn2=2xn(x-xn),
令y=0,x=
| xn |
| 2 |
| xn |
| 2 |
又x0=1,∴xn=
| 1 |
| 2n |
| 1 |
| 4n |
(2)证明:由(1)知xn=
| 1 |
| 2n |
所以an=
| 1 | ||
1+
|
| 1 | ||
1-
|
| 2n |
| 2n+ 1 |
| 2n+1 |
| 2n+1-1 |
| 1 |
| 2n+ 1 |
| 1 |
| 2n+1-1 |
由于
| 1 |
| 2n+ 1 |
| 1 |
| 2n |
| 1 |
| 2n+1-1 |
| 1 |
| 2n+1 |
得
| 1 |
| 2n+ 1 |
| 1 |
| 2n+1-1 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
∴an=2-(
| 1 |
| 2n+ 1 |
| 1 |
| 2n+1-1 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
从而Tn=a1+a2+a3+…+an>2n-[(
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
即Tn>2n-
| 1 |
| 2 |
(3)由于yn=
| 1 |
| 4n |
对于任意正整数n,不等式(1+
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 2n+3 |
a≤
| 1 | ||
|
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
设f(n)=
| 1 | ||
|
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
∴f(n+1)=
| 1 | ||
|
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 |
| bn+1 |
| f(n+1) |
| f(n) |
| ||
|
| 1 |
| bn+1 |
| ||
|
| 2n+4 |
| 2n+3 |
| 2n+4 | ||||
|
| ||
|
∴f(n+1)>f(n),故f(n)为递增,
∴f(n)min=f(1)=
| 1 | ||
|
| 4 |
| 3 |
4
| ||
| 15 |
∴0<a≤
4
| ||
| 15 |
点评:本题主要考查数列与解析几何综合的知识点,本题是一道综合性比较强的习题,解答本题的关键是准确求出数列{xn},{yn}的通项公式,熟练利用函数单调性求最值等知识点,此题难度较大.
练习册系列答案
相关题目