题目内容

某中学研究性学习小组,为了考查高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了50名学生,调查结果表明:在爱看课外书的25人中有18人作文水平好,另7人作文水平一般;在不爱看课外书的25人中有6 人作文水平好,另19人作文水平一般。
(1)试根据以上数据建立一个2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?
(2)将其中某5名爱看课外书且作文水平好的学生分别编号为1,2,3,4,5,某5名爱看课外书且作文水平一般的学生也分别编号为1,2,3,4,5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率。
附:K2的观测值计算公式:
临界值表:
P(K2≥k0
0.10
0.05
0.025
0.010
0.005
0.001
k0
2.706
3.841
5.024
6.635
7.879
10.828
解:(1)2×2列联表如下:

因为

由表知,P(K2≥10.828)≈0.001
故有99.9%的把握认为中学生的作文水平与爱看课外书有关系。
(2)设“被选取的两名学生的编号之和为3的倍数”为事件A,“被选取的两名学生的编号之和为4的倍数”为事件B
因为事件A所包含的基本事件为:(1,2),(1,5),(2,1),(2,4),(3,3),(4,2),(4,5),(5,1),(5,4),共9个,
基本事件总数为5×5= 25,所以
因为事件B所包含的基本事件为:(1,3),(2,2),(3,1),(3,5),(4,4),(5,3),共6个,
所以
因为事件A,B互斥,
所以P(A∪B)=P(A)+P(B)=
故被选取的两名学生的编号之和为3的倍数或4的倍数的概率是
练习册系列答案
相关题目

某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了 50名学生.调査结果表明:在爱看课外书的25人中有18人作文水平好,另7人作文水平一般;在不爱看课外书的25人中有6人作文水平好,另19人作文水平一般.

(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?

高中学生的作文水平与爱看课外书的2×2列联表

 

爱看课外书

不爱看课外书

总计

作文水平好

 

 

 

作文水平一般

 

 

 

总计

 

 

 

(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为1、2、3、4、5,某5名爱看课外书且作文水平一般的学生也分别编号为1、2、3、4、5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率.

参考公式:,其中.

参考数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【解析】本试题主要考查了古典概型和列联表中独立性检验的运用。结合公式为判定两个分类变量的相关性,

第二问中,确定

结合互斥事件的概率求解得到。

解:因为2×2列联表如下

 

爱看课外书

不爱看课外书

总计

作文水平好

 18

 6

 24

作文水平一般

 7

 19

 26

总计

 25

 25

 50

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网