题目内容
函数y=x3-3x的极大值为m,极小值为n,则m+n为( )
| A.0 | B.1 | C.2 | D.4 |
由题意可得:y′=3x2-3,
令y′=3x2-3>0,则x>1或者x<-1,
所以函数y=x3-3x在(-∞,-1)上递增,在(-1,1)上递减,在(1,+∞)上递增,
所以当x=-1时,函数有极大值m=2,当x=1,时,函数有极小值n=-2,
所以m+n=0.
故选A.
令y′=3x2-3>0,则x>1或者x<-1,
所以函数y=x3-3x在(-∞,-1)上递增,在(-1,1)上递减,在(1,+∞)上递增,
所以当x=-1时,函数有极大值m=2,当x=1,时,函数有极小值n=-2,
所以m+n=0.
故选A.
练习册系列答案
相关题目
直线y=a与函数y=x3-3x的图象有相异三个交点,则a的取值范围是( )
| A、(-2,2) | B、(-2,0) | C、(0,2) | D、(2,+∞) |