题目内容
已知数列{an}是由正整数组成的数列,a1=4且满足lgan=lgan-1+lgb,其中b>3,n>1,且n∈N+,则
等于( )
| lim |
| n→∞ |
| 3n-1-an |
| 3n-1+an |
| A.-1 | B.1 | C.
| D.
|
由已知得an=b•an-1,
∴{an}是以a1=4,公比为c的等比数列,则an=4•bn-1.
=
当b>3时,原式=
=
=
=-1
故选A.
∴{an}是以a1=4,公比为c的等比数列,则an=4•bn-1.
| lim |
| n→∞ |
| 3n-1-an |
| 3n-1+an |
| lim |
| n→∞ |
| 3n-1-4•bn-1 |
| 3n-1 +4•bn-1 |
当b>3时,原式=
| lim |
| n→∞ |
| 3n-1-an |
| 3n-1+an |
=
| lim |
| n→∞ |
| 3n-1-4•bn-1 |
| 3n-1 +4•bn-1 |
=
| lim |
| n→∞ |
(
| ||
(
|
故选A.
练习册系列答案
相关题目