题目内容
在△ABC中,角A为锐角,且f(A)=
+cos2A.
(1)求f(A)的最大值;
(2)若A+B=
,f(A)=1,BC=2,求△ABC的三个内角和AC边的长.
[cos(π-2A)-1]sin(π+
| ||||||
sin2(
|
(1)求f(A)的最大值;
(2)若A+B=
| 7π |
| 12 |
(I) 由已知得f(A)=
sin2A+cos2A=
(sin2A+cos2A+1)=
sin(2A+1)=
sin(2A+
)+
<2A+
<
∴当2A+
=
时,f(A)取值最大值,其最大值为
(II)由 f(A)=1得sin(2A+
)=
2A+
=
,A=
,∴B=
∴C=
在△ABC中,由正弦定理得:
=
∴AC=
=
=
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
| π |
| 4 |
| π |
| 4 |
| 5π |
| 4 |
| π |
| 4 |
| π |
| 2 |
| ||
| 2 |
(II)由 f(A)=1得sin(2A+
| π |
| 4 |
| ||
| 2 |
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
| π |
| 3 |
| 5π |
| 12 |
在△ABC中,由正弦定理得:
| BC |
| sinA |
| AC |
| sinB |
| BCsinB |
| sinA |
2sin
| ||
sin
|
| 6 |
练习册系列答案
相关题目