题目内容
已知函数f(x)=Acos(
+
),x∈R,且f(
)=
(1)求A的值;
(2)设α,β∈[0,
],f(4α+
π)=-
,f(4β-
π)=
,求cos(α+β)的值.
| x |
| 4 |
| π |
| 6 |
| π |
| 3 |
| 2 |
(1)求A的值;
(2)设α,β∈[0,
| π |
| 2 |
| 4 |
| 3 |
| 30 |
| 17 |
| 2 |
| 3 |
| 8 |
| 5 |
(1)f(
)=Acos(
+
)=Acos
=
A=
,解得A=2
(2)f(4α+
π)=2cos(α+
+
)=2cos(α+
)=-2sinα=-
,即sinα=
f(4β-
π)=2cos(β-
+
)=2cosβ=
,即cosβ=
因为α,β∈[0,
],
所以cosα=
=
,sinβ=
=
所以cos(α+β)=cosαcosβ-sinαsinβ=
×
-
×
=-
| π |
| 3 |
| π |
| 12 |
| π |
| 6 |
| π |
| 4 |
| ||
| 2 |
| 2 |
(2)f(4α+
| 4 |
| 3 |
| π |
| 3 |
| π |
| 6 |
| π |
| 2 |
| 30 |
| 17 |
| 15 |
| 17 |
f(4β-
| 2 |
| 3 |
| π |
| 6 |
| π |
| 6 |
| 8 |
| 5 |
| 4 |
| 5 |
因为α,β∈[0,
| π |
| 2 |
所以cosα=
| 1-sin2α |
| 8 |
| 17 |
| 1-cos2α |
| 3 |
| 5 |
所以cos(α+β)=cosαcosβ-sinαsinβ=
| 8 |
| 17 |
| 4 |
| 5 |
| 15 |
| 17 |
| 3 |
| 5 |
| 13 |
| 85 |
练习册系列答案
相关题目
已知函数f(x)=a-
,若f(x)为奇函数,则a=( )
| 1 |
| 2x+1 |
A、
| ||
| B、2 | ||
C、
| ||
| D、3 |