题目内容
已知△ABC中,内角A、B、C的对边的边长为a、b、c,且bcosC=(2a-c)cosB,则y=cosA+cosC的最大值为______.
△ABC中,∵bcosC=(2a-c)cosB,由正弦定理得:
2RsinBcosC=(4RsinA-2RsinC)cosB,即 sinBcosC+sinCcosB=2sinAcosB,
化简为sin(B+C)=2sinAcosB,∴sinA=2sinAcosB,∴cosB=
,∴B=60°,A+C=120°.
又 y=cosA+cosC=2cos
cos
=cos
≤1,当且仅当A=C时,取等号,故y=cosA+cosC的最大值为1
故答案为 1.
2RsinBcosC=(4RsinA-2RsinC)cosB,即 sinBcosC+sinCcosB=2sinAcosB,
化简为sin(B+C)=2sinAcosB,∴sinA=2sinAcosB,∴cosB=
| 1 |
| 2 |
又 y=cosA+cosC=2cos
| A+C |
| 2 |
| A-C |
| 2 |
| A-C |
| 2 |
故答案为 1.
练习册系列答案
相关题目