题目内容

如图,四边形ABCD为正方形,QA⊥平面ABCDPDQAQA=AB=PD

(I)证明:PQ⊥平面DCQ

(II)求棱锥QABCD的的体积与棱锥PDCQ的体积的比值.

解:(I)由条件知PDAQ为直角梯形

因为QA⊥平面ABCD,所以平面PDAQ⊥平面ABCD,交线为AD.

又四边形ABCD为正方形,DC⊥AD,所以DC⊥平面PDAQ,可得PQ⊥DC.

在直角梯形PDAQ中可得DQ=PQ=PD,则PQ⊥QD

所以PQ⊥平面DCQ.   ………………6分

   (II)设AB=a.

由题设知AQ为棱锥Q—ABCD的高,所以棱锥Q—ABCD的体积

由(I)知PQ为棱锥P—DCQ的高,而PQ=,△DCQ的面积为

所以棱锥P—DCQ的体积为

故棱锥Q—ABCD的体积与棱锥P—DCQ的体积的比值为1.…………12分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网