题目内容
22.函数 (Ⅰ)用
、
、
表示m;
(Ⅱ)证明:当x∈(0,+∞)时,g(x)≥f(x);
(Ⅲ)若关于
的不等式
上恒成立,其中a、b为实数,求b的取值范围及a与b所满足的关系.
22.(Ⅰ)解:![]()
(Ⅱ)证明:
令![]()
因为
递减,所以
递增,因此,当
;
当
.所以
是
唯一的极值点,且是极小值点,可知
的最小值为0,因此
即
(Ⅲ)解法一:
,
是不等式成立的必要条件,以下讨论设此条件成立.
对任意
成立的充要条件是![]()
另一方面,由于
满足前述题设中关于函数
的条件,利用(II)的结果可知,
的充要条件是:过点(0,
)与曲线
相切的直线的斜率不大于
,该切线的方程为![]()
于是
的充要条件是
综上,不等式
对任意
成立的充要条件是
①
显然,存在a、b使①式成立的充要条件是:不等式
②
有解.
解不等式②得
③
因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.
(Ⅲ)解法二:
是不等式成立的必要条件,以下讨论设此条件成立.
对任意
成立的充要条件是
令
,于是
对任意
成立的充要条件是
由![]()
当
时
当
时,
,所以,当
时,
取最小值.因此
成立的充要条件是
,即
综上,不等式
对任意
成立的充要条件是
①
显然,存在a、b使①式成立的充要条件是:不等式
②
有解.
解不等式②得
![]()
因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.
练习册系列答案
相关题目
设y=8x2-lnx,则此函数在区间(0,
)和(
,1)内分别( )
| 1 |
| 4 |
| 1 |
| 2 |
| A、单调递增,单调递减 |
| B、单调递增,单调递增 |
| C、单调递减,单调递增 |
| D、单调递减,单调递减 |