题目内容
已知函数f(x)=lg(x2-2x+a),若函数f(x)的定义域为R,求实数a的取值范围.
思路分析:f(x)的定义域为R,即x2-2x+a>0恒成立,转化为二次函数来说明容易理解,二次函数的最小值大于零即可.
解:f(x)的定义域为R,即t=x2-2x+a>0恒成立,也即二次函数图象在x轴上方.
由于t=x2-2x+a=(x-1)2+a-1,只要a-1>0即可,
∴a的取值范围为a>1.
练习册系列答案
相关题目
题目内容
已知函数f(x)=lg(x2-2x+a),若函数f(x)的定义域为R,求实数a的取值范围.
思路分析:f(x)的定义域为R,即x2-2x+a>0恒成立,转化为二次函数来说明容易理解,二次函数的最小值大于零即可.
解:f(x)的定义域为R,即t=x2-2x+a>0恒成立,也即二次函数图象在x轴上方.
由于t=x2-2x+a=(x-1)2+a-1,只要a-1>0即可,
∴a的取值范围为a>1.