题目内容
已知函数f(x)=
-
(a>0)
(1)证明f(x)在(0,+∞)上单调递增;
(2)若f(x)的定义域、值域都是[
,2],求实数a的值;
| 1 |
| a |
| 1 |
| x |
(1)证明f(x)在(0,+∞)上单调递增;
(2)若f(x)的定义域、值域都是[
| 1 |
| 2 |
(1)∵f(x)=
-
(a>0)∴f'(x)=
,当x∈(0,+∞)时,f'(x)>0
故函数f(x)在(0,+∞)上单调递增
(2)∵函数f(x)在(0,+∞)上单调递增∴函数f(x)在[
,2]是单调递增,
当x=
时,f(
)=
-2=
∴a=
| 1 |
| a |
| 1 |
| x |
| 1 |
| x2 |
故函数f(x)在(0,+∞)上单调递增
(2)∵函数f(x)在(0,+∞)上单调递增∴函数f(x)在[
| 1 |
| 2 |
当x=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| a |
| 1 |
| 2 |
| 2 |
| 5 |
练习册系列答案
相关题目