题目内容
定义平面向量之间的一种运算“⊙”如下:对任意的a=(m,n),b=(p,q),令a⊙b=mq-np.在下面的说法中错误的有 .
①若a与b共线,则a⊙b=0;②a⊙b=b⊙a;③对任意的λ∈R,有(λa)⊙b=λ(a⊙b)
④(a⊙b)2+(a·b)2=|a|2|b|2
【答案】
( ② )
【解析】若a=(m,n)与b=(p,q)共线,则mq-np=0,依运算“⊙”知a⊙b=0,故①正确;由于a⊙b=mq-np,又b⊙a=np-mq,因此a⊙b=-b⊙a,故②不正确;对于③,由于λa=(λm,λn),因此(λa)⊙b=λmq-λnp,又λ(a⊙b)=λ(mq-np)=λmq-λnp,故③正确;对于④,(a⊙b)2+(a·b)2=m2q2-2mnpq+n2p2+(mp+nq)2=m2(p2+q2)+n2(p2+q2)=(m2+n2)(p2+q2)=|a|2|b|2. 故④正确.
练习册系列答案
相关题目
定义平面向量之间的一种运算“⊙”如下:对任意的
=(m,n),
=(p,q),令
⊙
=mq-np,下面说法错误的是( )
| a |
| b |
| a |
| b |
A、若
| ||||||||||||
B、
| ||||||||||||
C、对任意的λ∈R,有(λ
| ||||||||||||
D、(
|
定义平面向量之间的一种运算“*”如下:对任意的
=(m,n),
=(p,q),令
*
=mq-np.给出以下四个命题:(1)若
与
共线,则
*
=0;(2)
*
=
*
;(3)对任意的λ∈R,有(λ
)*
=λ(
*
)(4)(
*
)2+(
•
)2=|
|2•|
|2.(注:这里
•
指
与
的数量积)则其中所有真命题的序号是( )
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| b |
| a |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| A、(1)(2)(3) |
| B、(2)(3)(4) |
| C、(1)(3)(4) |
| D、(1)(2)(4) |