题目内容

2.已知α,β为锐角,cosα=$\frac{1}{7},cos(α+β)=-\frac{11}{14}$,求cosβ的值及β的大小.

分析 由题意和同角三角函数基本关系可得sinα和sin(α+β),代入cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα,计算可得.

解答 解:∵α,β为锐角,cosα=$\frac{1}{7},cos(α+β)=-\frac{11}{14}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4\sqrt{3}}{7}$,同理sin(α+β)=$\frac{5\sqrt{3}}{14}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα
=$-\frac{11}{14}$×$\frac{1}{7}$+$\frac{4\sqrt{3}}{7}$×$\frac{5\sqrt{3}}{14}$=$\frac{1}{2}$,∴β=$\frac{π}{3}$

点评 本题考查两角和与差的余弦公式,涉及同角三角函数基本关系,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网