题目内容
已知α∈(0,π),cos(α+
)=
,则cosα=
.
| π |
| 4 |
| 1 |
| 2 |
| ||||
| 4 |
| ||||
| 4 |
分析:利用三角函数间的关系可求得sin(α+
),再利用两角差的余弦即可求得答案.
| π |
| 4 |
解答:解:∵α∈(0,π),
∴0<α+
<
,
∵cos(α+
)=
,
∴sin(α+
)=
,
∵cosα=cos[(α+
)-
]
=cos(α+
)cos
+sin(α+
)sin
=
×
+
×
=
.
故答案为:
.
∴0<α+
| π |
| 4 |
| 5π |
| 4 |
∵cos(α+
| π |
| 4 |
| 1 |
| 2 |
∴sin(α+
| π |
| 4 |
| ||
| 2 |
∵cosα=cos[(α+
| π |
| 4 |
| π |
| 4 |
=cos(α+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
=
| ||||
| 4 |
故答案为:
| ||||
| 4 |
点评:本题考查同角三角函数间的基本关系,考查两角和与差的余弦函数,属于中档题.
练习册系列答案
相关题目